If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2+4=14
We move all terms to the left:
2k^2+4-(14)=0
We add all the numbers together, and all the variables
2k^2-10=0
a = 2; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·2·(-10)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*2}=\frac{0-4\sqrt{5}}{4} =-\frac{4\sqrt{5}}{4} =-\sqrt{5} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*2}=\frac{0+4\sqrt{5}}{4} =\frac{4\sqrt{5}}{4} =\sqrt{5} $
| 3x^2+14=62 | | x÷3-7=2=2-7 | | 17x-4(2x-3)=2(5+7)+6x | | n÷5+0.25=5.75 | | 68+10x+62=180 | | n÷3-7=2 | | 91+(11x-87)=180 | | 17+13y=38 | | x+9/2x=16 | | x+5x+9=180 | | 5x-9=8(x-2) | | 10x+27=107 | | (7x-20)+(5x-10)=180 | | (7x-20)+(5x+10)=180 | | 119+(13x+41)=180 | | 119+13x+41=180 | | 2(x+3)-44=2(x+9) | | 16-2r=-3r=1 | | 152011=1E+07x-63360 | | 108+11x+50=180 | | 4x^+10x+4=0 | | 9-4x=5x-27 | | 108+11x+50=108 | | 9-4x=5-27 | | 14x-25=77 | | 2x(x7)÷4=49 | | 2(x7)/4=49 | | 17x-1+84+85=360 | | 18x+12=8x+6 | | 3+x3+x+72=3x+1 | | 2/3(1+x)=1 | | -30=x+(-6) |